Refraction Problems

Remember

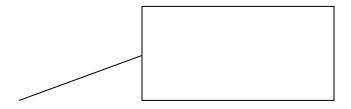
"n" for air is always 1.0

 $c = 3.0 \times 10^8 \text{ m/s}$

1) Use the given information to solve for the unknowns in the chart below.

Material	Index of refraction (n)	Speed of light in the given medium (v)	
Ruby		1.95 x 10 ⁸ m/s	
Sapphire		1.69 x 10 ⁸ m/s	
Diamond	2.42		
Water (liquid)	1.33		
Water (ice)	1.30		

2) Why is the index of refraction different for water as a liquid as compared to solid state?


3) Complete the chart below. Make you calculations on another page.

Medium 1	Medium 2	Index of refraction (n₁)	Index of refraction (n ₂)	Angle of incidence (Θ ₁)	Angle of refraction (Θ₂)
Air	Diamond		2.42	30°	
Air	Zircon		1.90	30°	
Diamond	Air	2.42			10°
Water	Diamond	1.33	2.42		10°

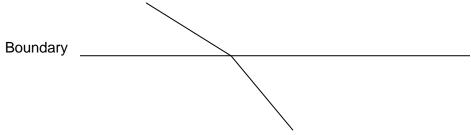
4) If the angle of incidence (from crown glass, n=1.52) is 30°, find the angle of refraction in diamond (n=2.42).

5) a) Draw a **ray diagram** to show the path of ray of light as it passes from air into a block of glass (n=1.61) then through the block and out the other side.

Be sure to sketch the **normals** and show your **measured angles** and **calculations** using Snell's Law.

b) What would happen to the angle of refraction if the block was made of ice (n=1.30)? larger smaller same

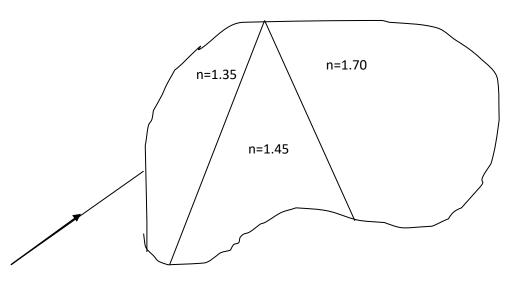
c) How will the light bend when it passes back into the air?


Toward normal OR away from normal

6) Complete the chart below

Medium 1	Medium 2	Index of refraction (n ₁)	Index of refraction (n ₂)	Critical Angle (Θ ₁)
Diamond	Air	2.42	1.00	
Water	Air	1.33	1.00	
Glass	Water		1.33	61.4°

7) In the diagram below, light is crossing a boundary from air to water (n = 1.33).


Draw the **normal line**, indicate the **direction** of the rays & **label** each medium as air or water.

- 8) You want to scoop a fish out of water. Where should you aim relative to the fish to capture it? Explain using a diagram.
- 9) In a magic trick, a coin in a cup can only be viewed when water is in the cup. Explain how this demonstration works using ray diagrams showing the cup without water and containing water.

10) A diagram below shows a ray travelling from air into an object composed of 3 different media. Complete the diagram by continuing the **ray** until it **leaves** the object.

Remember to draw a new normal at the boundary between <u>each</u> medium

