

Determining Bond & Molecular Polarity: Bonds & molecules are either Polar or Non-Polar.

1 Complete the chart below (except the last column)

Use Phet Molecule Shapes & <u>http://bit.ly/2Za8zLb</u> chart to help with shape names and determining symmetry.

Compound	Atom with greater EN	EN Difference	Type of Bond(s)	Shape	Molecule Symmetry (Y/N)	
HCI						
H ₂ S						
CaO						
PCl₃						

Molecule Polarity Determined by:

- a) If <u>all of the bonds</u> are all ionic the polarity is just "**Ionic**"
- b) If all of the bonds are non-polar covalent then the molecule is "Non-Polar"
 - i. ** Unless there are unbound electrons **
- c) If the only bond is polar then the molecule is "Polar"

d) If <u>one or more of the bonds are polar</u> then look at symmetry:
If the polar covalent bonds are arranged in a way that causes them to cancel each other out (ie. linear, tetrahedron, or trigonal planar and all bonds are the same) then the molecules is "Non-Polar" due to symmetry
If the polar covalent bonds do not cancel each other out (ie. pyramid, linear, or bent) then the molecule is "Polar"

2. Label the last column in the chart above "Polar or Non-Polar?" and complete the chart.

3. Complete the chart below.

Compound	Molecule Dot Diagram	Type of Bond(s)	Shape	Molecule Symmetry	Polar or Non- Polar Molecule?
H ₂					
N ₂					

to. Biochem	istry – ropie z Atoms, be				Polar or Non-
Compound	Molecule Dot Diagram	Type of Bond(s)	Shape	Molecule Symmetry	Polar Molecule?
O ₂					
CaCl ₂					
СО					
CH4					
CO ₂					
NH ₃					
NCl₃					
CF4					
CCI4					
NaCl					
H ₂ O					