2DN Optics Review

$n = \frac{c}{v}$ $c = 3.0 \times 10^8 \frac{m}{s}$ $n_i \sin \theta_i = n_r \sin \theta_r$	$\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}$	$M = \frac{h_i}{h_o} = \frac{-d_i}{d_o}$
---	---	--

Main Topics					
Topic 1: Properties & Production of Light	 3 main properties of light Electromagnetic spectrum Luminous, non-luminous Methods of production: incandescence, electric discharge, fluorescence, phosphorescence, chemiluminescence, bioluminescence, triboluminescence, LED, Laser 	Topic 4: Refraction	 Refraction Index of refraction (n) Calculate n Describe what happens to light as it passes into less or more dense medium Apparent depth Snell's law TIR & critical angle Dispersion 		
Topic 2: Reflection in Plane Mirrors	 Laws of Reflection Specular & diffuse reflection Describing images (SALT) Real & virtual images Drawing ray diagrams for plane mirrors SALT for plane mirrors 	Topic 5: Lenses	 Converging lens – draw ray diagrams, describe SALT Diverging lens - draw ray diagrams, describe SALT Thin lens equation & magnification equation Use equations to describe image Signs for concave & convex lenses (f, di, hi, M) 		
Topic 3: Reflection in Curved Mirrors	 Concave/converging – draw ray diagrams, describe SALT Convex/diverging mirrors - draw ray diagrams, describe SALT Curved mirror equation & magnification equation Use equations to describe image Understanding signs for concave & convex mirrors (f, di & hi) 				

SAMPLE QUESTIONS

1.	Define	each	of the	foll	owing	terms:
1				1	\mathcal{O}	

Source	Light produced by
Chemiluminescence	
Bioluminescence	
Electroluminescence	
Fluorescence	
Phosphorescence	
Incandescence	
Triboluminescence	

2. Label the electromagnetic spectrum below with the terms used to describe the different wavelengths:

3. A source that emits light of all wavelengths will appear _____.

4. An object that absorbs light of all wavelengths will appear _____

5. All electromagnetic (light) waves travel at a speed of ______ in a vacuum.

- 6. In which of the following mirrors can you always expect an image that is virtual and the same size as the object?
 - a) Convex
 - b) Concave
 - c) Plane
- 7. How is a virtual image different from a real image?
- 8. State the laws of reflection
- 9. a) What is the definition of index of refraction?
 - b) What is the formula for calculating the index of refraction of a material?

10. a) Define critical angle.

- b) How can the value of the critical angle be measured?
- 11. A concave lens produces a virtual image of a flower petal 2.00 cm from the lens. Determine the magnification of the lens if the petal is 8.30 cm from the lens.
- 12. Light travels through a salt crystal that has a refractive index of 1.52. What is the speed of light in the crystal?
- 13. Titan is a moon of Saturn that has liquid methane in the atmosphere. Liquid methane has an index of refraction of 1.29. If a beam of light from the Sun approaches the atmosphere of Titan at an angle of 36.0°, what is its angle of refraction?
- 14. A lens produces a larger, upright, virtual image that is 12.25 cm from the lens. The object is located 5.10 cm away. What is the focal length of the lens?
- 15. The image of an object in a mirror is farther from the mirror than the object, larger than the object, real, and inverted. Draw a ray diagram that fits these criteria.
- 16. While walking on a beach, you find a clear, colourless rock that may be quartz (n = 1.46) or a piece of glass (n = 1.52). Explain how you could use variations in the angles of refracted light and the index of refraction to determine whether the rock is glass or quartz.
- 17. Draw a ray diagram and write a short explanation to show why it is sometimes difficult to reach a coin that is underwater in a pond.
- 18. a) Draw a ray diagram for an object between 2F' and F' in a converging lens.
- 19. Draw a ray diagram of an object in a convex mirror.
- 20. a) Describe the differences between refraction and reflection as a way to change the direction of a light ray.