Mirror Practice Problems

1. A small object is placed 50 cm from a concave mirror with a focal length of 20 cm .
a) How far is the image from the mirror? +33.33 cm
b) Is the image on the same side of the mirror as the object? YES BK d, is positive
c) Is the image upright or inverted? Inverted bk it is a real image
d) Is the image real or virtual? Real bk on some side of object (di =ve)
e) If the object is 8 mm tall, how tall is the image?

$$
-0.53 \mathrm{~cm}
$$

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{d o}+\frac{1}{d i} \\
\frac{1}{20 \mathrm{~cm}}=\frac{1}{50 \mathrm{~cm}}+\frac{1}{d i} \\
\frac{5}{100 \mathrm{~cm}}-\frac{2}{100 \mathrm{~cm}}-\frac{1}{d i} \\
\frac{3}{100 \mathrm{~cm}}=\frac{1}{d i} \\
d i=\frac{100 \mathrm{~cm}}{3} \\
d i=33.33 \mathrm{~cm} \\
\frac{h i}{h o}=\frac{-d i}{d o} \\
\frac{h i}{0.8 \mathrm{~cm}}=-\frac{33.33 \mathrm{~cm}}{50 \mathrm{~cm}} \\
h i=-0.53 \mathrm{~cm}
\end{gathered}
$$

2. A 6.0 cm pin is located 20 cm from a 25 cm focal length concave mirror. Determine the location, size, nature and orientation of the image of the pin. S- larger (5x) A- upright (hi=ve) L- behind mirror Tvirtual (di=ve)

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{d o}+\frac{1}{d i} \\
\frac{1}{25 \mathrm{~cm}}=\frac{1}{20 \mathrm{~cm}}+\frac{1}{d i} \\
\frac{4}{100 \mathrm{~cm}}-\frac{5}{100 \mathrm{~cm}}=\frac{1}{d i} \\
\frac{-1}{100 \mathrm{~cm}}=\frac{1}{d i} \\
d i=-100 \mathrm{~cm} \\
m=\frac{-d i}{d o} \\
=\frac{-(-100 \mathrm{~cm})}{20 \mathrm{~cm}} \\
=5
\end{gathered}
$$

3. A light source 30 cm from a concave mirror on the lab bench produces an image across the room on the wall, a distance of 10 metres away.
a) What is the focal length of the mirror? 0.29 m
b) Is the image inverted or upright? Inverted since do $>\mathbf{f}$
c) If the filament is 25 mm across, how big is the image? -83 cm

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{d o}+\frac{1}{d i} \\
\frac{1}{f}=\frac{1}{0.3 m}+\frac{1}{10 m} \\
\frac{1}{f}=\frac{10}{3 m}+\frac{0.3}{3 m} \\
\frac{1}{f}=\frac{10.3}{3 m} \\
f=\frac{3 m}{10.3}=0.29 m
\end{gathered}
$$

$$
\begin{gathered}
\frac{h i}{h o}=\frac{-d i}{d o} \\
\frac{h i}{0.025 m}=\frac{10 m}{0.3 m} \\
\begin{aligned}
h i & =-0.83 m \\
& =-83 \mathrm{~cm}
\end{aligned}
\end{gathered}
$$

4. A concave mirror produces a real, inverted image of an object. The image is half the size of the object. If the object is 40 cm from the mirror, what is its focal length? 13.33 cm

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{40 \mathrm{~cm}}+\frac{1}{20 \mathrm{~cm}} \\
\frac{1}{f}=\frac{3}{40 \mathrm{~cm}} \\
f=13.33 \mathrm{~cm}
\end{gathered}
$$

5. Concave mirrors can be used as for shaving or applying make up. The face must be inside the focus.

You hold a concave mirror, with a focal length of 40 cm , about 30 cm from your face. a)
Where is your image located? -120 cm
b) How much bigger than your face is the image?

4x larger
$\frac{1}{40 \mathrm{~cm}}=\frac{1}{30 \mathrm{~cm}}+\frac{1}{d i}$
$\frac{3}{120 \mathrm{~cm}}-\frac{4}{120 \mathrm{~cm}}+\frac{1}{d i}$
$\frac{-1}{120 \mathrm{~cm}}=\frac{1}{d i}$
$d i=-120 \mathrm{~cm}$
$m=\frac{-d i}{d o}$
$=\frac{-(-120 \mathrm{~cm})}{30 \mathrm{~cm}}$
$=4$

$$
=4
$$

7. Find the focus \qquad

8. A convex mirror is placed on the ceiling at the intersection of two hallways. If a person stands directly underneath the mirror, the person's shoe is a distance of 195 cm from the mirror. The mirror forms an image of the shoe appearing 12.8 cm behind the mirror's surface.
a) What is the mirror's focal length? $\mathbf{- 1 3 . 7 0}$
b) What is the magnification of the image? 0.07
c) Is the image real or virtual? Virtual (always in context)
d) Is the image upright or inverted? Upright (always in context)

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{d o}+\frac{1}{d i} \\
\frac{1}{f}=\frac{1}{195}+\frac{1}{-12.8} \\
=\frac{12.8}{2496}-\frac{-195}{2496}
\end{gathered}
$$

$$
\begin{gathered}
=\frac{-182.2}{2496} \\
m=\frac{-(-12.8 \mathrm{~cm})}{195 \mathrm{~cm}} \\
=+0.066 \\
\frac{1}{f}=\frac{-182.2}{2496} \\
f=-13.70
\end{gathered}
$$

9. A dentist uses a small mirror of radius 40 mm to locate a cavity in a patient's tooth. The mirror is concave and held 16 mm from the tooth.
a) What is the magnification of the image? $5 \mathbf{x}$
b) What is the mirror's focal length? 20 min
c) What is the distance of the image from the mirror? -80 mm
d) Is the image real or virtual? virtual
e) Is the image upright or inverted? Upright

$$
\begin{gathered}
\frac{1}{20 m m}=\frac{1}{16 m m}+\frac{1}{d i} \\
\frac{1}{20 m m}=\frac{1}{16 m m}=\frac{1}{d i} \\
\frac{4}{80 \mathrm{~mm}}-\frac{5}{80 \mathrm{~mm}}=\frac{1}{d i} \\
\frac{-1}{80 \mathrm{~mm}}=\frac{1}{d i} \\
d i=-80 \mathrm{~mm}
\end{gathered}
$$

$$
\text { radius }=C=2 f
$$

$$
40 m m=2 f
$$

$$
f=20 m
$$

$$
m=\frac{-d i}{d o}=\frac{-(-80 \mathrm{~mm})}{16 \mathrm{~mm}}
$$

10. A production line inspector wants a mirror that produces an upright image with a magnification of 7.5 when it is located 14.0 mm from a machine part.
a) What kind of mirror would do this job? Concave since \mathbf{M} is +ve
b) What is the radius of curvature? $\mathbf{C}=\mathbf{2 f}=\mathbf{3 2 . 4} \mathbf{~ m m}$
$+m$ so must be concanve

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{d o}+\frac{1}{d i} \\
& =\frac{1}{14 m m}+\frac{1}{-105 m m} \\
& \frac{1}{f}=\frac{13}{20} \quad f=16.2 \mathrm{~mm} \\
& m=\frac{-d i}{d o} \\
& 7.5=\frac{-d i}{14 m m} \quad-d i=105 m m
\end{aligned}
$$

11. Penny wishes to take a picture of her image in a plane mirror. If the camera is 1.2 m in front of the mirror, at what distance should the camera lens be focused? 2.4 m
12. Draw the ray diagram to find the image

