SBI4U MOLECULAR GENETICS Unit Checklist

Name:

Mastery Checks may be attempted more than once and are not considered complete until **> 70%** is achieved.

Торіс	Objective(s)	Key Concepts	Approx. # Hours	Video Lessons & Notes	Activities Check answers & Uploaded to OneNote	Mastery Checks Thatquiz.org Min 70%
1	Ethics in Genetics: Explain social, ethical, and legal implications of genetics & biotechnology	- Stem cells - GMOs - DNA fingerprinting - Gene patenting - Cloning	1 hr online			
2	DNA Structure & History: Describe historical scientific contributions that have advanced molecular genetics Explain the basic structure and components of DNA	- base pairing, A,C,G,T, hydrogen bonds, - Chargaff's rule - purines & pyrimidines - sugar-phosphate backbone, phosphodiester bonds, - Anti-parallel, 3', 5' ends	1.5 hrs online	L 1 video		□ Got Itl
3	DNA Replication: Explain how DNA replication occurs in cells and why it is important Describe the different repair mechanisms that can correct mistakes in DNA sequencing	 - Leading Strand, Lagging strand, Okazaki Fragments, Replication fork/bubble - Enzymes: DNA Helicase, DNA Polymerases, Gyrase, - 3', 5', RNA Primers, ESSBP's, 	2.5 hrs online	L 1 video		
4	Transcription: Explain the process of transcription and its importance to living organisms Compare the structures and functions of RNA and DNA, and explain their roles in the process of protein synthesis	-Central Dogma: DNA →RNA →Protein - DNA → mRNA, 5' to 3' -Genomes: Genes & Non-Coding DNA, Introns, Exons - Nucleus, Promoters (TATA box), Template strand, RNA Polymerase, 5' cap, Poly-A tail, mRNA, Terminators, Processing	2.5 hrs online	L 1 video		
5	Translation: Explain the steps of translation as involved in the process of protein synthesis	 Cytoplasm tRNA, rRNA, Ribosome A-P-E sites, codons, start codon, amino acids, stop codon Amino Acid interactions & shape Wobble hypothesis 	2.5 hrs online	L 1 video		
6	Mutations: Explain how mutations can occur by changing the genetic material in cells and the effects of these changes	-Causes: Physical/Chemical, Spontaneous errors, Germ/Somatic -Types: Point (Substitution & Insert/Delete), Inversion, Duplication, Translocation, Transposon -Effects: Silent, Missense/nonsense, Wobble Effect, Role of Introns, Non-Coding Sections -Significance: Loss of function, Enhanced Function, Advantage	2.5 hrs online	L 1 video		Got It!
7	Control Mechanisms: Explain how genetic expression is controlled in prokaryotes and eukaryotes by regulatory proteins	- Lac Operon & Trp Operon - Regulators	2.5 hrs online	2 videos		Got It!
8	Biotechnology Describe examples of genetic modification, and explain how it is applied in industry and agriculture	- PCR - RFLP - CRISPR	1.5 hrs online	L 1 video		

Quizzes & TestsDATETopics 1-3 QuizFriday May 28thUnit TestEnides lange 4th

Unit Test

Friday June 4th

Molecular Genetics Terms to Know

	_		Okazaki Eragmonts	
-	3'	- Exonuclease A site		- RNA Primer
-	5'	- Expression	- Operator	- Semiconservative
-	Adenine	 Frame shift 	- Operon	 Silent mutation
-	Aminoacyl-tRNA	- Franklin	- Origin of Replication	- Single-Stranded Binding
-	Anticodon	- Gene Patenting	- P site	Proteins
-	Antiparallel	- Gene Regulation	 Parental Strand 	- Small Subunit
-	BRCA Gene	- Genes	 Peptide Bond 	- Spontaneous
-	Central Dogma	- Genetically Modified	 Phosphate Group 	- Stem Cell
-	Chargaff's Rule	Organisms	- Phosphodiester Bond	- Substitution
-	Codon	- Glycosyl Bond	- Pluripotent	- TATA Box
-	Complimentary	- Guanine	- Point Mutation	- Termination
	Base-Pairing	- Housekeeping genes	- Polypeptide	- Termination Sequence
-	Cytosine	- Induced mutation	- Posttranscriptional	- Therapeutic Cloning
-	Daughter Strand	- Induction	- Posttranslational	- Thymine
-	Deletion	- Initiation	- Primase	- Totipotent
-	Deoxyribose Sugar	- Insertion	- Promoter	- Transcription
-	DNA Fingerprinting	- Inversion	- Promoter Region	- Transcription Factor
-	DNA Gyrase	- lac Operon	- Purine	- Transcription factors
-	DNA Helicase	- Lagging Strand	- Pyrimidine	- Transcription Unit
-	DNA Ligase	- Large Subunit	- Reading Frame	- Transcriptional
-	DNA Polymerase I	- Leading Strand	- Release Factor	- Translation
-	DNA Polymerase III	- Missense mutation	- Replication	- Translational
-	DNA Template	- mRNA	- Replication Bubble	- Translocation
-	Double Helix	- Mutagenic agent	- Replication Fork	- Transposable
-	Double Helix	- Mutation	- Repression	- tRNA
-	Downstream	- Nitrogenous Base	- Reproductive Cloning	- trp Operon
-	Elongation	- Nonsense mutation	- Ribosome	- Upstream
-		- Nucleotide	- RNA Polymerase II	- Watson & Crick