

SBI4U METABOLIC PROCESSES Unit Checklist

_

BI4U	J METABOLIC PROCESSES	Unit Checklist	Nai	me:		loreescier	
Торіс	Objective(s)	Key Concepts	Approx. # Hours Not including making notes	Video Lessons & Notes	Activities Check answers & Uploaded to OneNote	Mastery Checks Thatquiz.org Min 75%	
1	Intro to Cellular Respiration & Types of Reactions: Understand how processes fit together: Glycolysis, Pyruvate Oxidation, Krebs Cycle & ETC Identify & describe the 4 main types of biochemical reactions	- ATP input and output - Energy Carriers - Anabolic - Catabolic - Redox - Neutralization	2 hrs online	L 1 video		Got It!	
2	Glycolysis & Pyruvate Oxidation : Explain the chemical changes and energy conversions occurring Identify molecules and their roles throughout the processes	 Anaerobic in cytoplasm Role of NAD⁺/NADH Energy invest/harvest Net 2 ATP Oxidation of pyruvate Names of molecules 	1 hr online	2 videos			
3	Kreb's Cycle / Citric Acid Cycle: Explain the chemical changes and energy conversions associated with Kreb's Cycle Identify molecules and their roles throughout the process	- Oxidation reactions - Production of NADH/FADH2 - Names of molecules	1.5 hrs online	L 1 video		Got It!	
4	Electron Transport Chain: Explain the chemical changes and energy conversions associated with the E.T.C. Identify molecules and their roles throughout the process	- Matrix & cristae - Movement of electrons - Coupled reactions - Redox reactions - Coenzymes - Role of O ₂ - Electrochemical gradient & ATP	2.5 hrs online	2 videos			
5	Regulating Cellular Respiration & Alternative Pathways: <i>Explain the process of using proteins and lipids</i> <i>as energy molecules and how they fit into the</i> <i>chemical processes</i>	- Calculating ATP - Muscle fatigue, BMR, activity level - Deamination - 6- oxidation	2 hrs online	L 1 video		Got lt!	
6	Anaerobic Respiration: Explain the chemical changes and energy conversions associated with anaerobic cellular respiration	- Fermentation - Recycle NAD⁺/NADH - Lactic Acid - Ethanol	1.5 hrs online	L 1 video			
	Cellular F	Respiration Test: Tue	sday May	18 th			
7	Photosynthesis – Light Reactions & Calvin Cycle: Explain the chemical changes and energy conversions associated with photosynthesis Describe, compare & illustrate the matter and energy transformations occurring during cellular respiration and photosynthesis	- Chloroplast structure, chlorophyll, transpiration, leaf structure, thylakoid, membranes & stroma - Pigments & visible spectrum - Light & electrons - Z-scheme, Cyclic & Non-cyclic ETC, role of H ₂ O & O ₂ - RUBISCO, RUBP & Redox	2 hrs online	2 videos		Got It!	
8	Photosynthesis – Environment & Light Curves: Explain how environmental conditions affect the chemical changes and energy conversions of photosynthesis and photorespiration.	- Light Curves - Irradiance - Stomata - Climate change & effects on chemical processes - Light saturation	2 hrs online	L 1 video		Got It!	
9	Photosynthesis in C4 & CAM Plants: Explain how plants have adapted and have altered the chemical changes and energy conversions associated with photosynthesis	- Alternative forms of carbon fixation - C3, C4 & CAM Plants - Photorespiration - Bundle sheath, mesophyll, - PEP carboxylase	2 hrs online	L 1 video			

Photosynthesis & Comparisons Test: _____

Quizzes & Tests

Cellular Respiration Test

Date

Photosynthesis & Comparisons Test

Metabolic Processes Terms to Know

	1,3-Bisphosphoglycerate 1,3-bisphosphoglycerate 3-Phosphoglycerate 3-Phosphoglycerate Absorption Acetaldehyde Acetyl-CoA ADP Aerobic Amino Acids Anaerobic Amtenna Pigment Anthocyanins ATP ATP Synthase b6-f Complex Bundle-Sheath C3 Plant C4 Plant Calvin Cycle CAM Plant Carotenoids Chemical Energy Chlorophyll Chlorophyll a Chlorophyll b Chlorophyll c Chlorophyll b Chlorophyll b C	 Light Independent Reactions Light Limited Light-Compensation Deamination DHAP Dihydroxyacetone- Phosphate Electron Transport Chair Electronegativity Endosymbiotic Theory Energy Return Ethanol FAD⁺/FADH₂ Fatty Acids Fermentation Ferredoxin Fructose-1,6- Bisphosphate Gluconeogenesis Glucose-6- Phosphate Glyceraldehyde- 3- Phosphate Glycerol Glycolysis Guard Cell Heavy Water Inter-membrane Investment Irradiance K⁺ Diffusion Kreb's / Citric Acid Cycle 		Lactate Lactic Acid Lactic Threshold Light Dependent Reactions Light Independent Reactions Light Limited Light-Compensation Point Light-Saturation Point Magnesium Malate Malic Acid Mesophyll Mitochondria Mitochondria Mitochondria Mitochondria Mitochondria Mitochondria Mitochondria Moter NAD ⁺ /NADH NADP Reductase NAD ⁺ /NADH NADP Reductase NAD ⁺ /NADH Non-Cyclic Electron Flow Oxaloacetic Acid Oxidative Phosphorylation P680 P700 PEP Carboxylase Phosphofructokinase Photons Photophosphorylation		Phytol tail Pigment Plastocyanin Plastoquinone Porphyrin Ring Primary Electron Acceptor Product Pyruvate Pyruvate Oxidation Reactant Reaction Center Chlorophyll Redox Respiration Ribulose bisphosphate RUBISCO RuBP Carboxylase Spectrum Stomata Stroma Substrate-level Phosphorylation Sugar Splitting Sulfur Bacteria Thylakoid Interior Transpiration Vacuole VO ₂ Max Wavelength Xanthophylls β-Oxidation
-	-		-		-	
-	•		-			β-Oxidation