DNA Mutations Practice Worksheet

DIRECTIONS: Transcribe and translate the original DNA sequence. Then, do the same for each mutated DNA sequence. Then, determine the consequence, if any, for each mutation, by circling your choice for each question. **You will need a Genetic Code Chart.**

Original DNA sequence:	TAC	ACC	TTG	GCG	ACG	ACT	
mRNA transcript:	AUG	UGG	AAC	CGC	UGC	UGA	
amino acids:	s: Met - Trp - Asn - Arg - Cys - STOP						

Mutated sequenc	TAC	AT	C TTG O	GCG A	CG ACT		
mRNA tran (Circle any ch		UG	UA	G AAC	CGC	UGC UC	A A
amino	acids:	let - 3	STC	P			
Type of mutation (Circle one.)	Point ⇔	Sub	stitutio	n	Frameshi ⇔	ft Insertion	or Deletion
How did the mutation affect the amino acid sequence (protein)? (Circle one.)	No chan	ge a	amino acid anged	Premature stop signal	No stop signal	1 amino acid added/ deleted	All the amino acids changed after the point of mutation

Nonsense mutation

Mutated sequenc		TAC	GAC	CTT G	GC G	AC GAC	Т
mRNA trar (Circle any ch	•	AU	G <mark>CUG</mark>	GAA (CCG C	CUG CUG	Α
amino	acids:	Ме	et - Leu	- Glu - F	Pro - Lo	eu - Leu	
Type of mutation (Circle one.)	Point ⇔		Substitution		Frameshi ⇔	ft Insertion	or Deletion
How did the mutation affect the amino acid sequence (protein)? (Circle one.)	No ch	ange	1 amino acid changed	Premature stop signal	No stop signal	1 amino acid added/ deleted	All the amino acids changed after the point of mutation

Extensive missense

	Mutated DNA sequence #3:			TT	\	GCG A	CG ACT			
mRNA trar (Circle any ch	•					GC UGC UGA				
amino	o acids:	Me	et - Trp) - As	sn -	- Arg -	Cys - STC	P		
Type of mutation (Circle one.)	Point ⇔	Su	ubstitution			Framesh ⇔	ift Insertion	or Deletion		
How did the mutation affect the amino acid sequence (protein)? (Circle one.)	No ch	ange	1 amino acid changed utatior	Prema stop si		No stop signal	1 amino acid added/ deleted	All the amino acids changed after the point of mutation		

Mutated sequenc		ТА	C ACC	TTG	GCG	Α	ст	ACT	
mRNA trar (Circle any ch	•	AL	AUG UGG AAC C			UC	GA	UGA	
amino	o acids:	Μ	et - Trp	- Asn	- Arg	- S ⁻	ΓΟΙ	Ρ	
Type of mutation (Circle one.)	Point ⇔	:	Substitution		Fra	meshif ⇔	t	Insertion	or Deletion
How did the mutation affect the amino acid sequence (protein)?	No ch	Ū	1 amino acid changed	Prematu stop sigr	nal sig		а	nino acid idded/ eleted	All the amino acids changed after the point of mutation
(Circle one.)		ons	ense m	utatio	n 🗌				

Mutated sequenc		ТА	C ACC	TTG	GGA	CGA	4	СТ	
mRNA trar (Circle any ch	•	AU	G UGG	AAC	CCU	GC	U (GA	
amino	o acids:	Μ	et - Trp	- Asn -	Pro -	Ala			
Type of mutation (Circle one.)	Point ⇔		Substitution		-	eshift ⇒	Ins	ertion	or Deletion
How did the mutation affect the amino acid sequence (protein)? (Circle one.)	No ch	ange	1 amino acid changed	Premature stop signa		· •	amin add dele		All the amino acids changed after the point of mutation

Missense mutation

CONCLUSIONS

1. Which type of mutation is responsible for new variations (alleles) of a trait?

Both point & substitution mutations can results in different amino acids.

2. Which type of mutation results in abnormal amino acid sequence?

Frameshift mutations (insertion & deletions)

- 3. Which type of mutation stops the translation of the mRNA?
- 2. A geneticist found that a particular mutation had no effect on the protein coded by a gene. What do you think is the most likely type of mutation in this gene? Why?

Substitution of the 3rd base in a codon Wobble hypothesis: multiple codons code for amino acids, having differences in the 3rd base pair

4. Examine your genetic code chart. Name one amino acid that has more than one codon. Name an amino acid that has only one codon.

All but Met & Trp have more than one codon

5. Look at the following sequence: THE FAT CAT ATE THE RAT. Delete the first H and regroup the letters in groups of three- write out the new groups of three. Does the sentence still make sense? What type of mutation is this an example of?

TEF ATC ATA TET HER AT No - this is a missense mutation caused by a deletion resulting in a frameshift

6. Given the following three mRNA sequences, determine which two code for the same protein. Circle them.

	mRNA #1	mRNA #2	mRNA #3
Transcript	AGU UUA GCA ACG AGA UCA	UCG CUA GCG ACC AGU UCA	AGC CUC GCC ACU CGU AGU
Translate	Ser - Leu - Ala - Thr - Arg - Ser	Ser - Leu - Ala - Thr - Ser - Ser	Ser - Leu - Ala - Thr - Arg - Ser

BONUS: You have a DNA sequence that codes for a protein and is 105 nucleotides long. A frameshift mutation occurs at the 85th base - how many amino acids will be correct in this protein? **SHOW YOUR WORK.**

105 nucleotides = 35.3 codons 85th base pair is 28.3 codons in, so in 28th amino acid