Curved Mirror Questions

1. On a separate sheet of paper, solve for the unknown values / properties in the table:

Mirror	f (cm)	C (cm)	d _o (cm)	d _i (cm)	М	Real or Virtual	Attitude
Concave	+ 10	+ 20	30			Real	Inverted
	+ 15		30				Inverted
	- 15	- 30		- 10		Virtual	
Convex		- 26	16				
	+ 30		30				

For the following problems, use the GRASS method (Given, Required, Analysis, Substitution, and Solution).

- 2. A thumb of height 8.0 cm is held in front of a concave mirror of focal length 10.0 cm. The image is formed 12.0 cm from the vertex of the mirror. Find:
 - a. The position of the object.
 - b. The magnification
 - c. The size of the image
 - d. The type and orientation of the image
- 3. In a physics lab, a candle is placed in front of a converging mirror with a focal length of 15 cm. If the candle sits at the centre of curvature (C) and has a flame 1.5 cm tall, find:
 - a. The distance to the object
 - b. The image position
 - c. The magnification
 - d. The image size
 - e. The type and orientation of the image.
- 4. A converging shaving/makeup mirror has a focal length of 17 cm. If the person's face is 12 cm from the vertex of the mirror and is 22 cm long, find:
 - a. The image position
 - b. The magnification
 - c. The image size
 - d. The type and orientation of the image.

- 5. For a concave mirror of focal length 20 cm, where must you place the object so that no image can be seen? Prove with a diagram and using the mirror equation.
- 6. The Palomar Telescope has a focal length of 18 m. If the diameter of the Sun is 1.39×10^9 m and its distance to the Earth is 1.49×10^{11} m, how large is the image of the Sun?
- 7. Looking at the back of a spoon you can see an image of your face. If the focal length of the spoon is 5.5 cm, and your face is 10.0 cm away and 22 cm long:
 - a. What type of mirror is the spoon?
 - b. What sign should the focal length have (positive or negative)?
 - c. What is the position of the image?
 - d. What is the magnification of the image?
 - e. What is the size of the image?
 - f. What is the orientation of the image?