

Chemical Equations

D2L → Content → Chemistry → GIZMOS

Class enrollment codes: Period 1: ZYK2YGT4K2 Period 4: PPXTNBMQWH

Gizmo Warm-up

Burning is an example of a **chemical reaction**. The law of **conservation of matter** states that no atoms are created or destroyed in a chemical reaction. Therefore, a balanced **chemical equation** will show the same number of each type of atom on each side of the equation.

To set up an equation in the *Chemical Equations* Gizmo, type the **chemical formulas** into the text boxes of the Gizmo. First, type in "H2+O2" in the **Reactants** box and "H2O" in the **Products** box. This represents the reaction of hydrogen and oxygen gas to form water

		Reactants		Products	
		H2+O2	\rightarrow	H2O	
1. Check	k that the Visual	l display is chosen on eac	h side of	the Gizmo, and count the atoms	
A. How many hydrogen atoms are on the Reactants side? Products side?					
В.	. How many oxy	ygen atoms are on the Re a	actants	side? Products side?	_
2. Based	d on what you se	ee, is this equation current	tly balan	ced?	
Activity	A :	Get the Gizmo ready:			Reactants
Interpreting chemical		Erase the chemical Check that the Visu			O O O O O O Pb Sb Sb

Introduction: To balance a chemical equation, you first need to be able to count how many atoms of each element are on each side of the equation. In this activity, you will practice counting the atoms that are represented in chemical formulas.

Question: How do we read chemical formulas

1. <u>Practice</u>: For each of the real chemical formulas below, calculate how many of each element there are. Check your answers for the first three formulas using the Gizmo.

AgCl ₃ Cu ₂	Ag:	CI:	Cu:	
Ba(AsO ₄) ₂	Ва:	As:	O:	
(NH ₄) ₃ PO ₄	N:	H:	P:	O:
$MnPb_8(Si_2O_7)_3$	Mn:	Pb:	Si:	O:

Activity B is on the back of this page

Α	ctivity B:	Get the Gizmo ready:		Atom count
Balancing equations		Erase the chemical formulas in each text box.		✓ The equation is properly
pr	oducts are the substan		re the substances that enter into the rection. A chemical reaction is balanced	•
1.	Observe: To model horand "H2O" into the Pro		ct to make water, type "H2+O2" into th	ne Reactants box
	As the equation is writt	ten, which element is not in I	balance?	_
2.	substances involved in		not allowed to change the chemical ed to change the number of molecule rmulas.	
	A. To balance the	oxygen atoms, add a "2" in	front of the "H2O" in the Products bo	x .
	How many	oxygen atoms are found on	each side of the equation now?	
		-	in front of the "H2" in the Reactants bon each side of the equation now?	
	C. Is this equation	currently balanced?	Click Show if balanced to check	<.

3. <u>Apply</u>: Now enter a more complex chemical reaction: Ca(OH)₂ + HBr → CaBr₂ + H₂O. List the numbers of each element in the tables below:

Reactants				
Ca	0	Н	Br	

Products				
Ca	0	Н	Br	

Α.	Which elements are out of balance?	

B.	Add coefficients to balance first the bromine (Br) and then the hydrogen (H) atoms.	When the
	equation is balanced, write the complete formula below:	

