

Alternate Mechanisms of Carbon Fixation

Rubisco → catalyzes 2 reactions: & ______ → →

→ has a greater affinity for _____

Photosynthesis	Photorespiration
Rubisco Substrate:	Rubisco Substrate:
Products:	Products:
What happens?	What happens?
Optimal Temperature:	Optimal Temperature:

C4 Plants:

In Class Questions:

- 1. (a) Define photorespiration.
 - (b) What gas can compete with CO2 for the binding site of the enzyme rubisco?
 - (c) Under normal conditions, what proportion of fixed carbon is affected by photorespiration in C3 plants?
 - (d) Compare the end products of photosynthesis and photorespiration.

2. How does temperature affect the relative amounts of photosynthesis and photorespiration that occur in C3 plants?

- 3. (a) Label A, B, C, D, and E in Figure 5.
 - (b) What type of cell-cell connection do malate and pyruvate go through to move from one cell into the other?
- 4. (a) What is the main difference between the ideal environments of C4 plants and CAM plants?(b) Name two C4 plants and two CAM plants.
- 6. (a) At what time of the day would you expect to find the most malate in CAM plants?
 - (b) When would you find the least amount of malate in CAM plants?
 - (c) Why do plants that use CAM photosynthetic pathways close their stomata during the day?
 - (d) During the cool of evening, CAM plants open their stomata. What gas is preferentially absorbed at this time?
 - (e) Explain how this gas is stored for daytime use.