Name:

Student Exploration: Diffusion

Activity A: Temperature and diffusion	<u>Get the Gizmo ready</u> : - Set the Wall to 100%.	Wall	100 %	5
Question: How do	es temperature affect	the rate of diffu	sion?	
 Set the temperature Observe the motion Click Reset. 	e (Temp.) to 100 K, press P n of particles.	Play. Temp.	100 K	Controls:
4. Set the temperature	e to 600 K, click Play , and c	observe. ^{Temp.}	60	0 К : 🕨
Describe how the parti	icles move when the temper	rature is higher		

Tools

(faster/slower, more/less...)

Find the time to reach equilibrium for each temperature:

- 5. Set the temperature (Temp.) to 100 K, press Play.
- 6. Let the molecules move until they look spread out.
- 7. Click the TABLE tab
- 8. Look through the X in A until you see a number smaller than 55%
- 9. Record the time in the chart below.
- 10. Click the Tools Tab, select screen shot.
- 10. Set the temperature to 600 K, click Play,
- 11. Repeat steps 6-10

Time to reach equilibrium

Temperature	Time (s)
100K	
600K	

Time (s)	x in A (%)	y in B (%)
39	54.00	0
40	48.00	0
41	50.00	0
42	50.00	0
43	50.00	0
44	44.00	0
. –		

BAR CHART

GRAPH

DESCRIPTION

TABLE

	uestion: How do factors other than temperature affect the te of diffusion?	x in A	Concentration gradient
1.	Click Reset	y in B	gradient
	Pick a variable to investigate. Which one did you choose?	Particle mass	-> Size of particles
3.	Form hypothesis: How do you think this variable will affect rates of diffus	ion?	Parates
	(Ifthen because)		

In an **experiment**, only one variable is changed.

- 4. In the list below **circle** the <u>one</u> variable you picked in #1 that will be changing.
- 5. Set up your experiment so that that only difference is in the variable you circled. Everything else needs to stay the same.
- 6. List the settings you will use for each set-up below.

Set-up 1	Set-up 2
Wall	Wall
x in A	x in A
y in B	y in B
Temp	Temp
Particle mass	Particle mass

7. Use the Gizmo to fill in each table.

The "time to reach equilibrium" is the time it takes for the number of **x** particles in region A to reach **55% or lower**.

Set-up 1			Set-up 2	47 48 49
Trial	Time to reach equilibrium	Trial	Trial Time to reach equilibrium	
1		1		
2		2		
3		3		
4		4		
5		5		

 Compare the times to reach equilibrium for each set-up. How did the variable you investigated affect the rate of diffusion?

DESCRIPTION

Time

(s)

45

TABLE

x in A

(%)

56.52

52.17

47.83

47.83

BAR CHART GRAPH

y in B

(%)

54.55

54.55

54.55

57.58