A polyatomic ion is a group of atoms with a net charge that act together as a group:

For Example:

Nitrate $\mathrm{NO}_{3}{ }^{1-}$ has a net charge of 1-

Phosphate $\mathrm{PO}_{4}{ }^{3-}$ has a net charge of of 3-

Example 1 Name the compound KNO_{3}

Step One

Write out the elemental name from the formula and include all of the ion charges for each element. In this case you have to recognize that there is a polyatomic ion present:

Note: the second part in a binary compound is always negative

Step Two

Since there is only one ion charge (they are not multivalent) for each you write:

Potassium Nitrate

Example 2 Name the compound FeCO_{3}

If there is more than one ion charge (multivalent) for the metal you would have to use the rules for multivalent ions to determine which Roman numeral to use in the name.

Example 3 Name the compound $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$

The same rules apply as above. The brackets around the $\left(\mathrm{NO}_{3}\right)_{2}$ are used to show the presence of two $\mathbf{N O}_{3}{ }^{1-}$ groups, the net charge on the two groups would be $2 \times \mathbf{1 -}=\mathbf{2 -}$, which would balance the Ca^{2+}. The number of nitrate groups does not matter in the name since there must be exactly two nitrate groups, so the name is

Calcium Nitrate

Table of Polyatomic Ions

+1 CHARGE		-1 CHARGE		-2 CHARGE		-3 CHARGE	
ion	name	ion	name	ion	name	ion	name
$\mathrm{NH}_{4}{ }^{+}$	ammonium	$\mathrm{NO}_{3}{ }^{-}$	nitrate	$\mathrm{CO}_{3}{ }^{2-}$	carbonate	$\mathrm{PO}_{4}{ }^{\text {- }}$	phosphate
$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium	$\mathrm{ClO}_{3}{ }^{-}$	chlorate	$\mathrm{SO}_{4}{ }^{2-}$	sulfate		
		$\mathrm{HCO}_{3}{ }^{-}$	hydrogen carbonate (bicarbonate)	$\mathrm{SO}_{3}{ }^{2-}$	sulfite		
		OH^{-}	hydroxide				
		$\mathrm{NO}_{2}{ }^{-}$	nitrite				

Formula to Names (Polyatomic lons) - Practice Sheet

Compound Formula	$\underline{\text { Step 1 }}$ Write out the Name of the Elements with lon Charges	Step 2 Work out the Positive Ion Charge	Step 3 Add the proper Roman Numeral (If necessary)
$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$	Copper ${ }^{(1+, 2+)}$ Nitrate ${ }^{(1-)}$	2 ions x 1- $=2-$ only one Cu therefore ion charge must be 2+	Copper (II) Nitrate

Compound Formula	Step 1 Write out the Name of the Elements with lon Charges	Step 2 Work out the Positive lon Charge	Step 3 Add the proper Roman Numeral (If necessary)
$\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}$	Cobalt ${ }^{(2+, 3+)}$ Nitrite ${ }^{(1-)}$		Cobalt (II) Nitrite

Compound Formula	Step 1 Write out the Name of the Elements with Ion Charges	Step 2 Work out the Positive Ion Charge	Step 3 Add the proper Roman Numeral (If necessary)
$\mathrm{Bi}(\mathrm{OH})_{5}$			Bismuth (V) Hydroxide
CuClO_{3}			Copper (I) Chlorate
CrPO_{4}			Chromium (III) Phosphate
$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{3}$			Nickel (III) Nitrate
$\mathrm{K}_{3} \mathrm{PO}_{4}$			Potassium Phosphate
$\mathrm{Sb}\left(\mathrm{NO}_{2}\right)_{5}$			Antimony (V) Nitrite
AgNO_{3}			Silver Nitrate
$\mathrm{Hg}_{2} \mathrm{SO}_{4}$			Mercury (I) Sulfate

