2D Optics Unit Review

Required Equations

$$c = \frac{c}{v}$$
 $c = 3.0 \times 10^8 \frac{m}{s}$

$$\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_i}$$

$$M = \frac{h_i}{h_o} = \frac{-d_i}{d_o}$$

Main Topics

Topic 1: Properties & Production of Light	 3 main properties of light Electromagnetic spectrum Luminous, non-luminous Methods of production: incandescence, electric discharge, fluorescence, phosphorescence, chemiluminescence, bioluminescence, triboluminescence, LED, Laser 	Topic 4: Refraction	 Refraction Index of refraction (n) Calculate n Describe what happens to light as it passes into less or more dense medium Apparent depth TIR & critical angle Dispersion
Topic 2: Reflection in Plane Mirrors	 Laws of Reflection Specular & diffuse reflection Describing images (SALT) Real & virtual images Drawing ray diagrams for plane mirrors SALT for plane mirrors 	Topic 5: Lenses	 Converging lens – draw ray diagrams, describe SALT Diverging lens - draw ray diagrams, describe SALT Thin lens equation & magnification equation Use equations to describe image Signs for concave & convex lenses (f, di, hi, M) Applications of lenses
Topic 3: Reflection in Curved Mirrors	 Concave/converging – draw ray diagrams, describe SALT Convex/diverging mirrors - draw ray diagrams, describe SALT Curved mirror equation & magnification equation Use equations to describe image Understanding signs for concave & convex mirrors (f, di & hi) 		

SAMPLE QUESTIONS

1. Define each of the following terms:

Define each of the following terms.				
Source	Light produced by			
Chemiluminescence				
Bioluminescence				
Fluorescence				
Incandescence				

2. Put the following labels on the electromagnetic spectrum below:

Radio, X-Ray, Ultra-violet, Microwave, Infrared, Gamma

Name of Wave (moeters) 102 11m 1m 10-1 10-2 10-3 10-4 10-5 10-6m 10-7m 10-5 10-9 10-10 10-11 10-12

- 3. A source that emits light of all visible wavelengths will appear ______.
- 4. An object that absorbs light of all wavelengths will appear _____.
- 5. All electromagnetic (light) waves travel at a speed of ______ in a vacuum.
- 6. In which of the following mirrors can you always expect an image that is virtual and the same size as the object?
 - a) Convex
 - b) Concave
 - c) Plane

- 7. How is a virtual image different from a real image?
- 8. State the 2 laws of reflection
- 9. Why can't the index of refraction be smaller than 1?
- 10. a) Define critical angle.
 - b) How can the value of the critical angle be determined?
- 11. A concave mirror produces a virtual image of a flower petal 2.00 cm from the lens. Determine the magnification of the lens if the petal is 8.30 cm from the lens.
- 12. Light travels through a salt crystal that has a refractive index of 1.52. What is the speed of light in the crystal?
- 13. The image of an object in a mirror is farther from the mirror than the object, larger than the object, real, and inverted. Draw a ray diagram that fits these criteria.
- 14. While walking on a beach, you find a clear, colourless rock that may be quartz (n = 1.46) or a piece of glass (n = 1.52). Explain how you could use variations in the angles of refracted light and the index of refraction to determine whether the rock is glass or quartz.
- 15. Draw a ray diagram and write a short explanation to show why it is sometimes difficult to reach a coin that is underwater in a pond.
- 16. Draw a ray diagram of an object in a convex mirror.
- 17. Describe the differences between refraction and reflection as a way to change the direction of a light ray.
- 18. Draw a ray diagram of an object in a converging lens.