Ms. Kueh

Textbook (Science Perspectives 10), Section 13.4 (pp. 562-566)

Complete the following ray diagram. Label each of the following: $h_{o}, h_{i}, d_{o}, d_{i}$, and f.

Provide terms for each of the variables.

Variable	Term
h_{o}	
h_{i}	
d_{o}	
d_{i}	
f	

Write the Thin Lens Equation:

Write the Magnification Equation:

Complete the following table.

Variable	Positive	Negative
h_{o}		
h_{i}		
d_{o}		
d_{i}		
F		
M		

1. A converging lens has a focal length of 17 cm . A candle is located 48 cm from the lens. What type of image will be formed, and where will it be located?
2. A diverging lens has a focal length of 29 cm . A virtual image of a marble is located 13 cm in front of the lens. Where is the marble located?
3. A toy of height 8.4 cm is balanced in front of a converging lens. An inverted, real image of height 23 cm is noticed on the other side of the lens. What is the magnification of the lens?
4. A small toy building block is placed 7.2 cm in front of a lens. An upright, virtual image of magnification 3.2 is noticed. Where is the image located?
5. A coin of height 2.4 cm is placed in front of a diverging lens. An upright, virtual image of height 1.7 cm is noticed on the same side of the lens as the coin. What is the magnification of the lens?
6. A converging lens has a focal length of 23 cm . A frog is 32 cm from the lens. Calculate where the image of the frog will be located.
7. A pencil is located 53 cm from a diverging lens. An upright, virtual image of the pencil is observed 18 cm from the lens. Calculate the focal length of this lens.
8. A diverging lens has a focal length of 34 cm . An upright, virtual image of a small booklet is located 13 cm behind the lens. Where is the booklet located?
9. A converging lens has a focal length of 16 cm . An insect is located 11 cm from the lens. Where will the image of the insect be located?
10. A vase of height 12 cm is placed in front of a converging lens. An inverted image of height 35 cm is noticed on the other side of the lens.
a. Use the magnification equation to calculate the magnification of the lens.
b. What type of image is it?
11. A playing card of height 14 cm is placed in front of a converging lens. An inverted, real image of height 7.9 cm is noticed on the other side of the lens. What is the magnification of the lens?
12. A postage stamp of height 2.8 cm is placed in front of a diverging lens. A virtual image of height 1.3 cm is noticed on the same side of the lens as the stamp.
a. What is the magnification of the lens?
b. Is there an inversion of the image?
13. A small fork is placed 9.4 cm in front of a lens. An upright, virtual image of the fork with a magnification of 5.6 times is observed.
a. Where is the image located?
b. What is the focal length for this lens?
c. What kind of lens is this? Explain.
