Variables:

 d_o = object distance

d_i = image distance (negative if behind mirror)

 h_0 = object height

h_i = image height (negative if inverted)

Equations

$$\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$$
 or $f^{-1} = d_o^{-1} + d_i^{-1}$

$$M = \frac{h_i}{h_o} = \frac{-d_i}{d_o}$$

Calculations with Concave Converging & Convex Diverging Mirrors

- 1. An object is 30.0 cm from a concave mirror of 15.0-cm focal length. The object is 1.8 cm high. Use the lens/mirror equation to answer the following:
 - a) Where is the image located?

$$d_0 = 30 \text{cm}$$
 $f = \frac{1}{15} \text{cm}$ $f = \frac{1}{15$

b) How high is the image?

- 2. An object is placed 25.0 cm away from a concave mirror that has a focal length of 5.00 cm.
- a) Where is the image located? = - = -5 -15 - di 4 = 1 di = 6.25 cm
- b) If the object is 8.0 cm high, what is the height of the image?

$$\frac{hi}{ho} = \frac{-di}{do}$$

$$\frac{hi}{8} = \frac{-(6.25)}{25}$$

$$\frac{hi}{8} = -0.25$$

$$\frac{hi}{8} = -0.25$$

- 3. A convex security mirror in a warehouse has a radius of curvature of -1.0 m. A 2.0-m-high forklift is r=-1m -> f=-0.5cm 5.0 m from the mirror.
 - a) What is the location of the image?
- b) What is the size of the image?

$$f = 0.5m$$
 $f = di$
 $hi = -di$
 $ho = 2m$
 $do = 5.0m$
 $di = ?$
 $di = -0.5 = 5$
 $di = -0.45m$
 $di = -2.2$
 $di = -2.2$

$$\frac{hi}{ho} = -\frac{di}{do}$$
 $\frac{hi}{2} = -\frac{(-0.45)}{5}$
 $\frac{hi}{2} = 0.18m$