Glue this side down into your science notebook.

"A dot is a lot!"

For more info about this lesson visit http://www.middleschoolscience.com/balance.html

Liz LaRosa
5th grade science
www.middleschoolscience.com
2010

Balancing Equations

Pre Lab Questions:

Answer the following before you begin the activity:

5H ₂	1.	What number represents the Coefficient ?
	2.	What number represents the Subscript ?
	3.	What element is represented by the letter "H"?
	4.	How many "H's" do you have?

Procedure:

- 1. Using your set of cards, replicate the chemical equation onto your desk.
- 2. Label the reactant side and the product side.
- 3. Record all your information into the data table.
- 4. Identify the elements on the reactant side.
- 5. Count the number of atoms for each element.
- 6. Identify the elements on the product side.
- 7. Count the number of atoms on the product side.
- 8. Are the 2 sides equal? If not, the equation is not balanced.
- 9. The index cards numbered 2 7 are your **coefficients**. They can **ONLY** be placed in front of the elements. You can **not** change the subscripts.
- 10. Choose an element that is not balanced and begin to balance the equations.
- 11. Continue until you have worked through all the elements.
- 12. Once they are balanced, count the final number of Reactants and Products.
- 13. Write the balanced equation.
- 14. Can your equation be simplified?

Make the following equations on your desk	Reactants	Products	Reactants	Products	Balanced
	Start	Start	Final	Final	Equation
H ₂ + O ₂ > H ₂ O					
H ₂ O ₂ > H ₂ 0 + O ₂					
Na + O ₂ > Na ₂ O					
N ₂ + H ₂ > NH ₃					
P ₄ + O ₂ > P ₄ O ₁₀					
Fe + H ₂ O> Fe ₃ O ₄ + H ₂					
C + H ₂ > CH ₄					
Na ₂ SO ₄ + CaCl ₂ > CaSO ₄ + NaCl					
C ₂ H ₆ + O ₂ > CO ₂ + H ₂ O					
Al ₂ O ₃ > Al + O ₂					