Balancing Chemical Equations

1.
2.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

$$
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}
$$

4.

$2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}$
5.
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{CH}_{3} \mathrm{OH}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$
6.
7.
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
8. $5 \mathrm{FeCl}_{2}+\mathrm{KMnO}_{4}+8 \mathrm{HCl} \rightarrow 5 \mathrm{FeCl}_{3}+\mathrm{KCl}+\mathrm{MnCl}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
9.

$$
\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}
$$

10.

$$
2 \mathrm{Al}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 3 \mathrm{H}_{2}+\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}
$$

12.

$3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
$2 \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$

On this page, the chemical names for different reactions are given, write down their formulas in a skeleton equation (using the ionic charges of various elements sheet), and then balance the equation you wrote.

Hint: In the examples below the gases made from only one element are actually made of molecules containing 2 atoms of that element, whereas the solids made from only one element are made from just 1 atom of that element.

1. Copper(III) oxide combines with hydrogen gas to produce solid copper and water.

$$
\mathrm{Cu}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \quad=>2 \mathrm{Cu}+3 \mathrm{H}_{2} \mathrm{O}
$$

2. Lead (II) nitrate combines with potassium iodide to create lead (II) iodide and potassium nitrate.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{KI} \quad==>\quad \mathrm{PbI}_{2}+2 \mathrm{~K}\left(\mathrm{NO}_{3}\right)$
3. Calcium metal and water combine to produce calcium hydroxide and hydrogen gas.
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \quad==>\quad \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
4. Lead(II) sulphide and oxygen gas combine to form lead and sulphur dioxide.
$\mathrm{PbS}+\mathrm{O}_{2}==>\quad \mathrm{Pb} \quad+\quad \mathrm{SO}_{2}$
5. Hydrogen sulphide can be broken into hydrogen gas and solid sulphur.
$\begin{array}{llll}\mathrm{H}_{2} \mathrm{~S} & ==> & \mathrm{H}_{2} \quad+\quad \mathrm{S}\end{array}$
